Quantcast
Channel: NextBigFuture.com
Viewing all articles
Browse latest Browse all 18181

China long term nuclear strategy and closing the fuel cycle with fast reactor and pyro-processing

$
0
0
A study considers three nuclear expansion scenarios to estimate China’s future uranium demand. The first scenario is the reference case and is based on China’s current long-term nuclear power development plan, which anticipates that nuclear power will have a 20-percent share (the current world nuclear share) of the total national installed capacity by 2050. The second scenario is a high-growth scenario, which anticipates continuous nuclear expansion and a 30-percent nuclear share of installed capacity by 2050. The third scenario is the low-growth scenario, which anticipates a 10-percent nuclear share by 2050.

China has justified its decision to reprocess its spent nuclear fuel on the grounds that it needs to create a secure source of fuel for nuclear power generation, it’s worth examining how China’s access to uranium resources is expected to match up with demand in the coming decades.

These scenarios all assume that nuclear growth will take the form of additional 1 GWe pressurized water reactors (PWR) and that Generation IV reactors will be developed to the point that they are commercially deployable by 2040. The study assumes that the nuclear portion of the installed generating capacity will be 150 GWe, 300 GWe, and 450 GWe for the three different growth scenarios, respectively. These projections are comparable to those in China’s 863 Energy Plan.

Existing and planned PWRs achieve a burn-up rate of about 50 GWd/t, with a capacity factor of 85 percent. The newly designed Gen III PWRs are assumed to achieve a 65-GWd/t burn-up rate, while existing PWRs from before are
assumed to operate with a 50 GWd/t burn-up rate

The annual MOX fuel load for the CEFR is 0.5 ton and the annual MOX fuel load for one CDFR is 7.5 tons, based on an 850-MWe power level, a 100-GWd/t burn-up rate, a 33-percent thermal efficiency, and an 80-percent capacity factor. The cost of MOX fuel fabrication is $1,950 per kgHM, while the cost of traditional LEU fuel is $1,640 per kgU, assuming a natural uranium price of $100 per kilogram.



Read more »

Viewing all articles
Browse latest Browse all 18181