Quantcast
Channel: NextBigFuture.com
Viewing all articles
Browse latest Browse all 18065

Lithium Sulfur batteries last for more charge cycles using a nickel-based metal organic framework cathode

$
0
0
Today's electric vehicles are typically powered by lithium-ion batteries. But the chemistry of lithium-ion batteries limits how much energy they can store. As a result, electric vehicle drivers are often anxious about how far they can go before needing to charge. One promising solution is the lithium-sulfur battery, which can hold as much as four times more energy per mass than lithium-ion batteries. This would enable electric vehicles to drive farther on a single charge, as well as help store more renewable energy. The down side of lithium-sulfur batteries, however, is they have a much shorter lifespan because they can't currently be charged as many times as lithium-ion batteries. Pacific Northwest National Laboratory researchers have developed a nickel-based metal organic framework to hold onto polysulfide molecules in the cathodes of lithium-sulfur batteries and extend the batteries’ life spans.

(H/T New Energy and Fuel)

Metal organic frameworks — also called MOFs — are crystal-like compounds made of metal clusters connected to organic molecules, or linkers. Together, the clusters and linkers assemble into porous 3-D structures. MOFs can contain a number of different elements. PNNL researchers chose the transition metal nickel as the central element for this particular MOF because of its strong ability to interact with sulfur.

During lab tests, a lithium-sulfur battery with PNNL's MOF cathode maintained 89 percent of its initial power capacity after 100 charge-and discharge cycles. Having shown the effectiveness of their MOF cathode, PNNL researchers now plan to further improve the cathode's mixture of materials so it can hold more energy. The team also needs to develop a larger prototype and test it for longer periods of time to evaluate the cathode's performance for real-world, large-scale applications.

PNNL is also using MOFs in energy-efficient adsorption chillers and to develop new catalysts to speed up chemical reactions.

"MOFs are probably best known for capturing gases such as carbon dioxide," Xiao said. "This study opens up lithium-sulfur batteries as a new and promising field for the nanomaterial."


A new, PNNL-developed nanomaterial called a metal organic framework could extend the lifespan of lithium-sulfur batteries, which could be used to increase the driving range of electric vehicles. Publicly available for use with the credit line, "Courtesy of Pacific Northwest National Laboratory."

Nano Letters - Letter
Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries


Read more »

Viewing all articles
Browse latest Browse all 18065

Trending Articles