Seth Shostak describes a very large optical interferometry space telescope array
Using interferometry to pool data from thousands of small mirrors in space spread out over 100 million miles to image exoplanets 100 light years away down to 2 meter resolution.
At 100 light-years, something the size of a Honda Accord subtends an angle of a half-trillionth of a second of arc. In case that number doesn’t speak to you, it’s roughly the apparent size of a cell nucleus on Pluto, as viewed from Earth.
I think you would have a cube or sphere 1 AU across and that volume would be filled with say 1 million space telescopes. This way every 0.01 AU there is a space telescope and then they get tasked to work with different scopes at different times in order to look at other locations. Each scope would need its own shading devices. so all of the actions are close together And only pivoting is required. 1 billion scopes would mean one every 0.001 AU. etc...
Read more »
Using interferometry to pool data from thousands of small mirrors in space spread out over 100 million miles to image exoplanets 100 light years away down to 2 meter resolution.
At 100 light-years, something the size of a Honda Accord subtends an angle of a half-trillionth of a second of arc. In case that number doesn’t speak to you, it’s roughly the apparent size of a cell nucleus on Pluto, as viewed from Earth.
I think you would have a cube or sphere 1 AU across and that volume would be filled with say 1 million space telescopes. This way every 0.01 AU there is a space telescope and then they get tasked to work with different scopes at different times in order to look at other locations. Each scope would need its own shading devices. so all of the actions are close together And only pivoting is required. 1 billion scopes would mean one every 0.001 AU. etc...
Read more »