Two research teams created two types of quantum bits, or "qubits" – the building blocks for quantum computers – that each process quantum data with an accuracy above 99%.
University of New South Wales researchers led by Prof. Dzurak has discovered a way to create an "artificial atom" qubit with a device remarkably similar to the silicon transistors used in consumer electronics, known as MOSFETs. Post-doctoral researcher Menno Veldhorst, lead author on the paper reporting the artificial atom qubit, says, "It is really amazing that we can make such an accurate qubit using pretty much the same devices as we have in our laptops and phones"
Morello's team has been pushing the "natural" phosphorus atom qubit to the extremes of performance. Dr Juha Muhonen, a post-doctoral researcher and lead author on the natural atom qubit paper, notes: "The phosphorus atom contains in fact two qubits: the electron, and the nucleus. With the nucleus in particular, we have achieved accuracy close to 99.99%. That means only one error for every 10,000 quantum operations."
Dzurak explains that, "even though methods to correct errors do exist, their effectiveness is only guaranteed if the errors occur less than 1% of the time. Our experiments are among the first in solid-state, and the first-ever in silicon, to fulfill this requirement."
Nature Nanotechnology - An addressable quantum dot qubit with fault-tolerant control-fidelity
Nature Nanotechnology - Storing quantum information for 30 seconds in a nanoelectronic device
Read more »
University of New South Wales researchers led by Prof. Dzurak has discovered a way to create an "artificial atom" qubit with a device remarkably similar to the silicon transistors used in consumer electronics, known as MOSFETs. Post-doctoral researcher Menno Veldhorst, lead author on the paper reporting the artificial atom qubit, says, "It is really amazing that we can make such an accurate qubit using pretty much the same devices as we have in our laptops and phones"
Morello's team has been pushing the "natural" phosphorus atom qubit to the extremes of performance. Dr Juha Muhonen, a post-doctoral researcher and lead author on the natural atom qubit paper, notes: "The phosphorus atom contains in fact two qubits: the electron, and the nucleus. With the nucleus in particular, we have achieved accuracy close to 99.99%. That means only one error for every 10,000 quantum operations."
Dzurak explains that, "even though methods to correct errors do exist, their effectiveness is only guaranteed if the errors occur less than 1% of the time. Our experiments are among the first in solid-state, and the first-ever in silicon, to fulfill this requirement."
Nature Nanotechnology - An addressable quantum dot qubit with fault-tolerant control-fidelity
Nature Nanotechnology - Storing quantum information for 30 seconds in a nanoelectronic device
Read more »