Quantcast
Channel: NextBigFuture.com
Viewing all articles
Browse latest Browse all 18065

World’s Thinnest Electric Generator

$
0
0
Researchers from Columbia Engineering and the Georgia Institute of Technology report today that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretcha

Piezoelectricity is a well-known effect in which stretching or compressing a material causes it to generate an electrical voltage (or the reverse, in which an applied voltage causes it to expand or contract). But for materials of only a few atomic thicknesses, no experimental observation of piezoelectricity has been made, until now. The observation reported today provides a new property for two-dimensional materials such as molybdenum disulfide, opening the potential for new types of mechanically controlled electronic devices.

Ultimately, Zhong Lin Wang notes, the research could lead to complete atomic-thick nanosystems that are self-powered by harvesting mechanical energy from the environment. This study also reveals the piezotronic effect in two-dimensional materials for the first time, which greatly expands the application of layered materials for human-machine interfacing, robotics, MEMS, and active flexible electronics.


An atomically thin material, molybdenum disulfide (MoS2), shown, could be the basis for unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.—Image courtesy of Rob Felt/Georgia Tech

Nature - Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics


Read more »

Viewing all articles
Browse latest Browse all 18065

Trending Articles