Quantcast
Channel: NextBigFuture.com
Viewing all articles
Browse latest Browse all 18190

Unusual Electronic State Found in New Class of Unconventional Superconductors

$
0
0
A team of scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Columbia Engineering, Columbia Physics and Kyoto University has discovered an unusual form of electronic order in a new family of unconventional superconductors. The finding, described in the journal Nature Communications, establishes an unexpected connection between this new group of titanium-oxypnictide superconductors and the more familiar cuprates and iron-pnictides, providing scientists with a whole new family of materials from which they can gain deeper insights into the mysteries of high-temperature superconductivity.

"Finding this new material is a bit like an archeologist finding a new Egyptian pharaoh's tomb," said Simon Billinge, a physicist at Brookhaven Lab and Columbia University's School of Engineering and Applied Science, who led the research team. "As we try and solve the mysteries behind unconventional superconductivity, we need to discover different but related systems to give us a more complete picture of what is going on—just as a new tomb will turn up treasures not found before, giving a more complete picture of ancient Egyptian society."

Top- Ripples extending down the chain of atoms breaks translational symmetry (like a checkerboard with black and white squares), which would cause extra spots in the diffraction pattern (shown as red dots in the underlying diffraction pattern). Bottom: Stretching along one direction breaks rotational symmetry but not translational symmetry (like a checkerboard with identical squares but stretched in one of the directions), causing no additional diffraction spots. The experiments proved these new superconductors have the second type of electron density distribution, called a nematic. Image credit: Ben Frandsen

Read more »

Viewing all articles
Browse latest Browse all 18190

Trending Articles