DNA parts were designed with full-size mechanical parts such as hinges and pistons in mind.The project is the first to prove that the same basic design principles that apply to typical full-size machine parts can also be applied to DNA—and can produce complex, controllable components for future nano-robots.
Ohio State mechanical engineers describe how they used a combination of natural and synthetic DNA in a process called “DNA origami” to build machines that can perform tasks repeatedly.
“Nature has produced incredibly complex molecular machines at the nanoscale, and a major goal of bio-nanotechnology is to reproduce their function synthetically,” said project leader Carlos Castro, assistant professor of mechanical and aerospace engineering. “Where most research groups approach this problem from a biomimetic standpoint—mimicking the structure of a biological system—we decided to tap into the well-established field of macroscopic machine design for inspiration.”
PNAS - Programmable motion of DNA origami mechanisms
Read more »
Ohio State mechanical engineers describe how they used a combination of natural and synthetic DNA in a process called “DNA origami” to build machines that can perform tasks repeatedly.
“Nature has produced incredibly complex molecular machines at the nanoscale, and a major goal of bio-nanotechnology is to reproduce their function synthetically,” said project leader Carlos Castro, assistant professor of mechanical and aerospace engineering. “Where most research groups approach this problem from a biomimetic standpoint—mimicking the structure of a biological system—we decided to tap into the well-established field of macroscopic machine design for inspiration.”
PNAS - Programmable motion of DNA origami mechanisms
Read more »