Scientists have found evidence of neuroinflammation in key regions of the brains of patients with chronic pain, according to a new study from Massachusetts General Hospital (MGH), a Harvard affiliate.
By showing that levels of an inflammation-linked protein are elevated in regions known to be involved in the transmission of pain, the study paves the way for the exploration of potential new treatment strategies. Published online in the journal Brain, the study also identifies a possible way around one of the most frustrating limitations in the study and the treatment of chronic pain — the lack of an objective way to measure the presence or intensity of pain.
“Demonstrating glial activation in chronic pain suggests that these cells may be a therapeutic target, and the consistency with which we found glial activation in chronic pain patients suggests that our results may be an important step towards developing biomarkers for pain conditions,” explained Loggia, an assistant professor of radiology at Harvard Medical School.
Credit: Marco Loggia/Martinos Center for Biomedical Imaging, MGH. Images created by averaging PET scan data from chronic pain patients (left) and healthy controls (right) reveals higher levels of inflammation-associated translocator protein (orange/red) in the thalamus and other brain regions of chronic pain patients.
Read more »
By showing that levels of an inflammation-linked protein are elevated in regions known to be involved in the transmission of pain, the study paves the way for the exploration of potential new treatment strategies. Published online in the journal Brain, the study also identifies a possible way around one of the most frustrating limitations in the study and the treatment of chronic pain — the lack of an objective way to measure the presence or intensity of pain.
“Demonstrating glial activation in chronic pain suggests that these cells may be a therapeutic target, and the consistency with which we found glial activation in chronic pain patients suggests that our results may be an important step towards developing biomarkers for pain conditions,” explained Loggia, an assistant professor of radiology at Harvard Medical School.
Credit: Marco Loggia/Martinos Center for Biomedical Imaging, MGH. Images created by averaging PET scan data from chronic pain patients (left) and healthy controls (right) reveals higher levels of inflammation-associated translocator protein (orange/red) in the thalamus and other brain regions of chronic pain patients.
Read more »