Quantcast
Channel: NextBigFuture.com
Viewing all articles
Browse latest Browse all 18146

CRISPR gene editing progressing to germ line genetic editing and the application for intelligence enhancement

$
0
0
Harvard's Luhan Yang described a human germline genetic editing experiment. Researchers hoped to obtain, from a hospital in New York, the ovaries of a woman undergoing surgery for ovarian cancer, caused by a mutation in a gene called BRCA1. Working with another Harvard laboratory, that of antiaging specialist David Sinclair, they would extract immature egg cells that could be coaxed to grow and divide in the laboratory. Yang would use CRISPR in these cells to correct the DNA of the BRCA1 gene. The objective would be to create a viable egg without the genetic error that caused the woman’s cancer.

Regardless of the fate of that particular experiment, human germ line engineering has become a burgeoning research concept. At least one other center in Boston is working on it, as are scientists in China, in the U.K., and at a biotechnology company called OvaScience, based in Cambridge, Massachusetts, that boasts some of the world’s leading fertility doctors on its advisory board.

The objective of these groups is to demonstrate that it’s possible to produce children free of specific genes that cause inherited disease. If it’s possible to correct the DNA in a woman’s egg, or a man’s sperm, those cells could be used in an in vitro fertilization (IVF) clinic to produce an embryo and then a child. It might also be possible to directly edit the DNA of an early-stage IVF embryo using CRISPR. Several people interviewed by MIT Technology Review said that such experiments had already been carried out in China and that results describing edited embryos were pending publication. These people didn’t wish to comment publicly because the papers are under review.

Guoping Feng, a neurobiologist at MIT’s McGovern Institute for Brain Research, where a colony of marmoset monkeys is being established with the aim of using CRISPR to create accurate models of human brain diseases. To create the models, Feng will edit the DNA of embryos and then transfer them into female marmosets to produce live monkeys. One gene Feng hopes to alter is SHANK3. The gene is involved in how neurons communicate and, when it’s damaged in children, is known to cause autism.
Read more »

Viewing all articles
Browse latest Browse all 18146

Trending Articles