An exoskeleton that enables movement and provides tactile feedback has helped eight paralysed people regain sensation and move previously paralysed muscles.
People can spend a lifetime feeling disconnected from their lower body, and tend to receive less physical therapy as a result. Just over a third of the 12,500 people who experience a spinal cord injury every year in the US have complete injuries.
The Walk Again Project's results suggest that rehabilitation with an exoskeleton might offer a better future. Developed by a team of 156 people spanning the globe, the device reads the wearer's brain activity using an electrode cap. Activity patterns associated with the wearer's intention to move are translated into an electrical signal that moves the legs of the exoskeleton, allowing the person to walk.
The exoskeleton has another important feature: it provides tactile feedback to the wearer. A flexible bed of temperature, pressure and proximity sensors – what the team calls an artificial skin – lines the sole of each foot. When the wearer takes a step, a signal is relayed to their forearm, which is still able to feel sensations. "You are driving the exoskeleton by thinking about what you want to do, and you are getting instantaneous feedback from the surface on how you're walking and how you're moving in space," says Nicolelis.
Read more »