A NASA NIAC study by Philip Lubin, is developing a system that will allow us to take a significant step towards interstellar exploration using directed energy propulsion combined with wafer scale spacecraft. One of NASA’s goals and one of humanity’s grand challenges is to explore other planetary systems by remote sensing, sending probes, and eventually life to explore. This is a long standing and difficult to implement dream. The technological challenges are formidable. A step in this direction is to send small probes that will supplement the current long range remote sensing done by orbital telescopes.
Detailed directed energy progress and the asteroid defense work that can be adapted for interstellar exploration
Toward directed energy planetary defense (Optical Engineering 53(2), 025103 (February 2014))
Asteroids and comets that cross Earth’s orbit pose a credible risk of impact, with potentially severe
disturbances to Earth and society. We propose an orbital planetary defense system capable of heating the surface of potentially hazardous objects to the vaporization point as a feasible approach to impact risk mitigation. We call the system DE-STAR, for Directed Energy System for Targeting of Asteroids and exploRation. The DESTAR is a modular-phased array of kilowatt class lasers powered by photovoltaic’s. Modular design allows for incremental development, minimizing risk, and allowing for technological codevelopment. An orbiting structure would be developed in stages. The main objective of the DE-STAR is to use focused directed energy to raise the surface spot temperature to ∼3000 K, sufficient to vaporize all known substances. Ejection of evaporated material creates a large reaction force that would alter an asteroid’s orbit. The baseline system is a DESTAR 3 or 4 (1- to 10-km array) depending on the degree of protection desired. A DE-STAR 4 allows initial engagement beyond 1 AU with a spot temperature sufficient to completely evaporate up to 500-m diameter asteroids in 1 year. Small objects can be diverted with a DE-STAR 2 (100 m) while space debris is vaporized with a DE-STAR 1 (10 m)
Beam power to distant probes—the system can be used to beam power to very distant spacecraft. At 1 AU the flux is 70 MW∕m2 or about 50,000 times the flux of the sun. At the edge of the solar system (30 AU) it is about 80 kW∕m2. At 225 AU the beam is about as bright as the sun is above Earth’s atmosphere. Similarly, it could be used to provide power to distant outposts on Mars or the Moon or literally to machine on the lunar surface (or possibly Mars). The latter would be a complex sociological and geopolitical discussion no doubt.
Read more »
Detailed directed energy progress and the asteroid defense work that can be adapted for interstellar exploration
Toward directed energy planetary defense (Optical Engineering 53(2), 025103 (February 2014))
Asteroids and comets that cross Earth’s orbit pose a credible risk of impact, with potentially severe
disturbances to Earth and society. We propose an orbital planetary defense system capable of heating the surface of potentially hazardous objects to the vaporization point as a feasible approach to impact risk mitigation. We call the system DE-STAR, for Directed Energy System for Targeting of Asteroids and exploRation. The DESTAR is a modular-phased array of kilowatt class lasers powered by photovoltaic’s. Modular design allows for incremental development, minimizing risk, and allowing for technological codevelopment. An orbiting structure would be developed in stages. The main objective of the DE-STAR is to use focused directed energy to raise the surface spot temperature to ∼3000 K, sufficient to vaporize all known substances. Ejection of evaporated material creates a large reaction force that would alter an asteroid’s orbit. The baseline system is a DESTAR 3 or 4 (1- to 10-km array) depending on the degree of protection desired. A DE-STAR 4 allows initial engagement beyond 1 AU with a spot temperature sufficient to completely evaporate up to 500-m diameter asteroids in 1 year. Small objects can be diverted with a DE-STAR 2 (100 m) while space debris is vaporized with a DE-STAR 1 (10 m)
Beam power to distant probes—the system can be used to beam power to very distant spacecraft. At 1 AU the flux is 70 MW∕m2 or about 50,000 times the flux of the sun. At the edge of the solar system (30 AU) it is about 80 kW∕m2. At 225 AU the beam is about as bright as the sun is above Earth’s atmosphere. Similarly, it could be used to provide power to distant outposts on Mars or the Moon or literally to machine on the lunar surface (or possibly Mars). The latter would be a complex sociological and geopolitical discussion no doubt.
Read more »