Quantcast
Viewing all articles
Browse latest Browse all 18113

Nuclear Fusion Company Helion Energy and others have received ARPA-E funding

ARPA-E has provided a combined $30 million in funding for nuclear projects

Helion Energy - Staged Magnetic Compression of FRC Targets to Fusion Conditions received $3,971,264 in funding

Helion Energy will investigate staged magnetic compression of field-reversed configuration (FRC) plasmas, building on past successes to develop a prototype that can attain higher temperatures and fuel density than previously possible. The team will use these results to assess the viability of scaling to a power reactor, which if successful would offer the benefits of simple linear geometry, attractive scaling, and compatibility with modern pulsed power electronics.

Key Benefits of Helion’s Approach

* Magneto-Inertial Fusion: By combining the stability of steady magnetic fusion and the heating of pulsed inertial fusion, a commercially practical system has been realized that is smaller and lower cost than existing programs.
* Modular, Distributed Power: A container sized, 50 MW module for base load power generation.
* Self-Supplied Helium 3 Fusion: Pulsed, D-He3 fusion simplifies the engineering of a fusion power plant, lowers costs, and is even cleaner than traditional fusion.
* Magnetic Compression: Fuel is compressed and heated purely by magnetic fields operated with modern solid state electronics. This eliminates inefficient, expensive laser, piston, or beam techniques used by other fusion approaches.
* Direct Energy Conversion: Enabled by pulsed operation, efficient direct conversion decreases plant costs and fusion’s engineering challenges.
* Safe: With no possibility of melt-down, or hazardous nuclear waste, fusion does not suffer the drawbacks that make fission an unattractive alternative.


Stabilized Liner Compressor (SLC) for Low-Cost Fusion received $4 million in funding

NumerEx, LLC, teamed with the National High Magnetic Field Laboratory in Los Alamos, NM, will develop the Stabilized Liner Compressor (SLC) concept in which a rotating, liquid metal liner is imploded by high pressure gas. Free-piston drive and liner rotation avoid instabilities as the liner compresses and heats a plasma target. If successful, this concept could scale to an attractive fusion reactor with efficient energy recovery, and therefore a low required minimum fusion gain for net energy output. The SLC will address several challenges faced by practical fusion reactors. By surrounding the plasma target with a thick liquid liner, the SLC helps avoid materials degradation associated with a solid plasma-facing first wall. In addition, with an appropriately chosen liner material, the SLC can simultaneously provide a breeding blanket to create more tritium fuel, allow efficient heat transport out of the reactor, and shield solid components of the reactor from high-energy neutrons.

Read more »Image may be NSFW.
Clik here to view.

Viewing all articles
Browse latest Browse all 18113

Trending Articles