A new class of magnets that swell in volume when placed in a magnetic field and generate negligible amounts of wasteful heat during energy harvesting, has been discovered by researchers at the University of Maryland (UMD) and Temple University.
“Our findings fundamentally change the way we think about a certain type of magnetism that has been in place since 1841,” said Chopra, who also runs the Materials Genomics and Quantum Devices Laboratories in Temple’s College of Engineering.
The researchers and others say this transformative breakthrough has the potential to not only displace existing technologies but create altogether new applications due to the unusual combination of magnetic properties.
“Chopra and Wuttig’s work is a good example of how basic research advances can be true game changers,” said Tomasz Durakiewicz, National Science Foundation condensed matter physics program director. “Their probing of generally accepted tenets about magnetism has led to a new understanding of an old paradigm. This research has the potential to catapult sustainable, energy-efficient materials in a very wide range of applications.”
These magnets could also find applications in efficient energy harvesting devices; compact micro-actuators for aerospace, automobile, biomedical, space and robotics applications; and ultra-low thermal signature actuators for sonars and defense applications.
Self-strain associated with highly periodic cellular micromagnetic structure gives rise to NJMM
Nature - Non-Joulian magnetostriction
Read more »