A Roadmap on Turbomachinery Research 2014 – 2020 by EUTurbines. Today more than 80% of the electricity generated worldwide is produced by gas and steam turbines. These machines are core components in coal, nuclear, gas, biomass and solar-thermal power plants. Together with the related technology of hydro turbines the share in electrical power generation is today close to 98%.
Turbines do have a simple but crucial role in power generation; they are converting a chemical (fuel) or physical (from steam) energy into a kinetic one, the rotation needed to drive a generator to convert it into electrical power.
While in smaller systems – depending on the application – there is the alternative to burn fuel in reciprocating engines or fuel cells, there is no other way to do fuel or steam based power conversion in large scale systems.
The IEA estimates that of all efforts required to deliver a 50% reduction in global emissions by 2050 24% will need to come from end use fuel efficiency, 12% has to come from end use electricity efficiency and a further 7% will need to come from power generation efficiency. There is substantial potential for improving thermal efficiency of Europe’s power plants. Our coal plants operate at an average 38% (BAT - Best Available Technology - on new coal plants delivers 46%). Our gas plants operate at an average of 52% efficiency (BAT- Best Available Technology - on new gas plants delivers more than 60%). Due to the age of the installed base, the average efficiency of Chinese coal plants is now higher than in Europe.
Advanced flow path design
The potential for improvement of gas and steam turbine efficiency by aerodynamic optimisation adds to the contributions of cooling and sealing air reductions. In the high pressure end of the turbine with short blades and vanes the secondary losses constitute a large portion of the total losses. These losses can be reduced by introduction of advanced endwall shaping, 3D features in the aerodynamic design of airfoils and clearance control. Also the detailed design of the endwalls, steps between platforms and interaction with purge flows from rotor stator cavities can be improved
Next generation hot gas path concepts
Increased gas turbine performance is very much related to an increase of the Turbine Inlet Temperature (TIT). But the coolant mass flows will need to be minimised to achieve as high performance benefits as possible. Advanced cooling systems concepts should be developed for engine first stage components and tested experimentally in test rigs (existing and new rigs, like liquid crystal rig, thermal imaging rig, film cooling rig as required, and in new, cold flow, low cost, component internal cooling test rigs). New cooling surfaces as well as new cooling schemes should be studied by CFD modelling to use the coolant in the best possible way before it will leave the component. To improve turbine efficiency today’s levels of cooling air, leakage air and sealing air (air to keep the hot gas in the flow path) must be heavily reduced
Read more »
Turbines do have a simple but crucial role in power generation; they are converting a chemical (fuel) or physical (from steam) energy into a kinetic one, the rotation needed to drive a generator to convert it into electrical power.
While in smaller systems – depending on the application – there is the alternative to burn fuel in reciprocating engines or fuel cells, there is no other way to do fuel or steam based power conversion in large scale systems.
The IEA estimates that of all efforts required to deliver a 50% reduction in global emissions by 2050 24% will need to come from end use fuel efficiency, 12% has to come from end use electricity efficiency and a further 7% will need to come from power generation efficiency. There is substantial potential for improving thermal efficiency of Europe’s power plants. Our coal plants operate at an average 38% (BAT - Best Available Technology - on new coal plants delivers 46%). Our gas plants operate at an average of 52% efficiency (BAT- Best Available Technology - on new gas plants delivers more than 60%). Due to the age of the installed base, the average efficiency of Chinese coal plants is now higher than in Europe.
Advanced flow path design
The potential for improvement of gas and steam turbine efficiency by aerodynamic optimisation adds to the contributions of cooling and sealing air reductions. In the high pressure end of the turbine with short blades and vanes the secondary losses constitute a large portion of the total losses. These losses can be reduced by introduction of advanced endwall shaping, 3D features in the aerodynamic design of airfoils and clearance control. Also the detailed design of the endwalls, steps between platforms and interaction with purge flows from rotor stator cavities can be improved
Next generation hot gas path concepts
Increased gas turbine performance is very much related to an increase of the Turbine Inlet Temperature (TIT). But the coolant mass flows will need to be minimised to achieve as high performance benefits as possible. Advanced cooling systems concepts should be developed for engine first stage components and tested experimentally in test rigs (existing and new rigs, like liquid crystal rig, thermal imaging rig, film cooling rig as required, and in new, cold flow, low cost, component internal cooling test rigs). New cooling surfaces as well as new cooling schemes should be studied by CFD modelling to use the coolant in the best possible way before it will leave the component. To improve turbine efficiency today’s levels of cooling air, leakage air and sealing air (air to keep the hot gas in the flow path) must be heavily reduced
Read more »