Quantcast
Channel: NextBigFuture.com
Viewing all articles
Browse latest Browse all 18065

IBM CTO eventually wants Watson AI to run on Quantum Computers

$
0
0
IBM Watson's chief technology officer Rob High said there was a "very natural synergy" between cognitive computing and quantum computing, revealing he hoped to one day see Watson run on a quantum system.

"I'd love to see a quantum Watson," he said. "IBM Research is actually working on next generation computing. I can't say exact numbers but a [quantum Watson] would be orders of magnitude more powerful than systems that are currently being used.

"Besides the obvious that both cognitive computing and quantum computing depart substantially from the classical forms of information computing, the biggest synergies lie in the realisation that increasingly sophisticated reasoning strategies employed by cognitive computing are going to require increasingly powerful and efficient underlying computing architectures."

IBM is yet to announce plans to integrate a quantum computer system with Watson but the software giant recently unveiled a new superconducting chip that demonstrates a technique crucial to the development of quantum computers.

The chip was a leap forward in research into quantum computers, as it was the first to integrate quantum bits – or qubits – into a two-dimensional grid. This is important for making a practical machine but there is still a long way to go before quantum computers find practical use.

In April 2015, IBM scientists unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions.
IBM’s novel and complex quantum bit circuit, based on a square lattice of four superconducting qubits on a chip roughly one-quarter-inch square, enables both types of quantum errors to be detected at the same time. By opting for a square-shaped design versus a linear array – which prevents the detection of both kinds of quantum errors simultaneously – IBM’s design shows the best potential to scale by adding more qubits to arrive at a working quantum system.

Read more »

Viewing all articles
Browse latest Browse all 18065

Trending Articles