Researchers have developed a new design for a cloaking device that overcomes some of the limitations of existing “invisibility cloaks.” In a new study, electrical engineers at the University of California, San Diego have designed a cloaking device that is both thin and does not alter the brightness of light around a hidden object. The technology behind this cloak will have more applications than invisibility, such as concentrating solar energy and increasing signal speed in optical communications.
“Invisibility may seem like magic at first, but its underlying concepts are familiar to everyone. All it requires is a clever manipulation of our perception,” said Boubacar Kanté, a professor in the Department of Electrical and Computer Engineering at the UC San Diego Jacobs School of Engineering and the senior author of the study. “Full invisibility still seems beyond reach today, but it might become a reality in the near future thanks to recent progress in cloaking devices.”
An extremely thin cloaking device is designed using dielectric materials. The cloak is a thin Teflon sheet (light blue) embedded with many small, cylindrical ceramic particles (dark blue). Credit: Li-Yi Hsu/UC San Diego.
The reflection pattern from an uncloaked object on a flat surface (top) compared to the reflection pattern of the same object covered with the cloaking device (bottom), which effectively mimics the reflection from a completely flat surface. Credit: Li-Yi Hsu/UC San Diego
Extremely thin Dielectric Metasurface for carpet cloaking
Read more »