Instead of engineering cells to work as tiny individuals, researchers are working on a new class of cellular machines that “talk” to each other– and behave in more sophisticated ways. Put simply, synthetic biology is going multicellular.
“Initially, there was more emphasis on engineering individual cells and real progress was made,” says Ron Weiss at the Massachusetts Institute of Technology. “But now there are an increasing number of demonstrations showing what’s possible with multiple cells. It’s another dimension.”
The latest example comes from a team led by Matthew Bennett at Rice University in Houston, Texas. They developed a system that at its simplest encourages cooperation between two distinct populations of Escherichia coli. One produces an “activator” signalling molecule that triggers the bacteria in the second population to produce a “repressor”. This signal can travel the other way and turn off production of the activating molecule
The team also engineered the E. coli so they would fluoresce depending on the strength of the signals. What’s interesting is the sophisticated way the two populations respond. They found that about every two hours, the cells in both populations fluoresced more and more, before gradually fading away again
Team work: three ecoli cells working togetherRon Weiss/SP
Science mag - Emergent genetic oscillations in a synthetic microbial consortium
Read more »
“Initially, there was more emphasis on engineering individual cells and real progress was made,” says Ron Weiss at the Massachusetts Institute of Technology. “But now there are an increasing number of demonstrations showing what’s possible with multiple cells. It’s another dimension.”
The latest example comes from a team led by Matthew Bennett at Rice University in Houston, Texas. They developed a system that at its simplest encourages cooperation between two distinct populations of Escherichia coli. One produces an “activator” signalling molecule that triggers the bacteria in the second population to produce a “repressor”. This signal can travel the other way and turn off production of the activating molecule
The team also engineered the E. coli so they would fluoresce depending on the strength of the signals. What’s interesting is the sophisticated way the two populations respond. They found that about every two hours, the cells in both populations fluoresced more and more, before gradually fading away again
Team work: three ecoli cells working togetherRon Weiss/SP
Science mag - Emergent genetic oscillations in a synthetic microbial consortium
Read more »