A new treatment that uses ‘molecular scissors’ to edit genes and create designer immune cells programmed to hunt out and kill drug resistant leukaemia has been used at Great Ormond Street Hospital (GOSH).
The treatment, previously only tested in the laboratory, was used in one-year-old, Layla, who had relapsed acute lymphoblastic leukaemia (ALL). She is now cancer free and doing well.
This breakthrough comes from GOSH and UCL Institute of Child Health’s (ICH) pioneering research teams, who together are developing treatments and cures for some of the rarest childhood diseases.
Chemotherapy successfully treats many patients with leukaemia but it can be ineffective in patients with particularly aggressive forms of the disease where cancer cells can remain hidden or resistant to drug therapy. Recent developments have led to treatments where immune cells, known as T-cells, are gathered from patients and programmed using gene therapy to recognise and kill cancerous cells. Multiple clinical trials are underway, but individuals with leukaemia, or those who have had several rounds of chemotherapy, often don’t have enough healthy T-cells to collect and modify meaning this type of treatment is not appropriate.
A team at GOSH has now used modified T-cells from donors, known as UCART19 cells, to treat a one-year-old child with an aggressive form of ALL who had unsuccessful chemotherapy and for whom palliative care was deemed the only option left.
Read more »