In an upcoming study in Nature Biotechnology, co-first authors Colin M. Exline, PhD, from USC and Jianbin Wang, PhD, from Sangamo BioSciences describe a new, more efficient way to edit genes in blood-forming or "hematopoietic" stem and progenitor cells (HSPCs).
"Gene therapy using HSPCs has enormous potential for treating HIV and other diseases of the blood and immune systems," said co-corresponding author Paula Cannon, PhD, professor of molecular microbiology and immunology, pediatrics, biochemistry and molecular biology, and stem cell biology and regenerative medicine at USC. "And using genome editing techniques now allows us to make very precise changes that could repair genetic mutations -- the gene typos -- that can cause disease."
Despite the enormous potential of such targeted gene medicine to cure patients, getting genome editing to work has proven challenging in human HSPCs -- especially in the most primitive, least differentiated cells with the greatest ability to become any blood cell type
CAPTION - HIV (yellow) infecting a human immune cell.
CREDIT Seth Pincus, Elizabeth Fischer and Austin Athman, National Institute of Allergy and Infectious Diseases, National Institutes of Health
Read more »
"Gene therapy using HSPCs has enormous potential for treating HIV and other diseases of the blood and immune systems," said co-corresponding author Paula Cannon, PhD, professor of molecular microbiology and immunology, pediatrics, biochemistry and molecular biology, and stem cell biology and regenerative medicine at USC. "And using genome editing techniques now allows us to make very precise changes that could repair genetic mutations -- the gene typos -- that can cause disease."
Despite the enormous potential of such targeted gene medicine to cure patients, getting genome editing to work has proven challenging in human HSPCs -- especially in the most primitive, least differentiated cells with the greatest ability to become any blood cell type
CAPTION - HIV (yellow) infecting a human immune cell.
CREDIT Seth Pincus, Elizabeth Fischer and Austin Athman, National Institute of Allergy and Infectious Diseases, National Institutes of Health
Read more »