Dwave has developed a quantum annealing processor, based on an array of tunably coupled rf-SQUID flux qubits, fabricated in a superconducting integrated circuit process. Implementing this type of processor at a scale of 512 qubits [Dwave now has a 1024 qubit processor in its labs] and 1472 programmable inter-qubit couplers and operating at ~ 20 mK has required attention to a number of considerations that one may ignore at the smaller scale of a few dozen or so devices. Here Dwave discusses some of these considerations, and the delicate balance necessary for the construction of a practical processor that respects the demanding physical requirements imposed by a quantum algorithm. In particular Dwave reviews some of the design trade-offs at play in the floor-planning of the physical layout, driven by the desire to have an algorithmically useful set of inter-qubit couplers, and the simultaneous need to embed programmable control circuitry into the processor fabric. In this context Dwave has developed a new ultra-low power embedded superconducting digital-to-analog flux converters (DACs) used to program the processor with zero static power dissipation, optimized to achieve maximum flux storage density per unit area. The 512 single-stage, 3520 two-stage, and 512 three-stage flux-DACs are controlled with an XYZ addressing scheme requiring 56 wires. Our estimate of on-chip dissipated energy for worst-case reprogramming of the whole processor is ~ 65 fJ. Several chips based on this architecture have been fabricated and operated successfully at Dwave's facility, as well as two outside facilities.
Arxiv - Architectural considerations in the design of a superconducting quantum annealing processor
Read more »
Arxiv - Architectural considerations in the design of a superconducting quantum annealing processor
Read more »