Researchers at Eindhoven University of Technology (TU/e) in the Netherlands and the University of Central Florida (CREOL) in the USA, have successfully transmitted at a record high 255 Terabits per second over a new type of fiber allowing 21 times more bandwidth than currently available in communication networks. This new type of fiber could be an answer to mitigating the impending optical transmission capacity crunch caused by the increasing bandwidth demand.
The new fibre has seven different cores through which the light can travel, instead of one in current state-of-the-art fibres. This compares to going from a one-way road to a seven-lane highway. Also, they introduce two additional orthogonal dimensions for data transportation – as if three cars can drive on top of each other in the same lane. Combining those two methods, they achieve a gross transmission throughput of 255 Terabits per second over the fibre link. This is more than 20 times the current standard of 4-8 Terabits per second.
Few-mode multicore fibre characteristics
Nature Photonics - Ultra-high-density spatial division multiplexing with a few-mode multicore fibre
Read more »
The new fibre has seven different cores through which the light can travel, instead of one in current state-of-the-art fibres. This compares to going from a one-way road to a seven-lane highway. Also, they introduce two additional orthogonal dimensions for data transportation – as if three cars can drive on top of each other in the same lane. Combining those two methods, they achieve a gross transmission throughput of 255 Terabits per second over the fibre link. This is more than 20 times the current standard of 4-8 Terabits per second.
Few-mode multicore fibre characteristics
Nature Photonics - Ultra-high-density spatial division multiplexing with a few-mode multicore fibre
Read more »